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The generalization of the Bonnet Theorem presented in this paper proves 
the possibility of a motion of a particle a1ong.a curve, under the action 

of an equivalent [resultant 1 force (resultant motion), if motions under 
the action of component forces (partial motions) are also possible. With 
the help of the above generalization, certain theorems of Bonnet [l ] 
Lagrange [ 2 I and Tallkvist [ 2 ] on the motion along hyperbolic arcs in 
the problem of two fixed attracting centers are corrected and made more 
precise. 

1. ill 
. 

e generalization of Bonnet's Iheorem. In 1844, Bonnet 

([l] , p. 13) proved the following theorem: If several masses m, m', m", 
. . . . acted on by forces F, F’, F”, . . . . respectively, with initial unequal 

codirectional velocities, u,,, uO', uO", . . . . with the same initial posi- 
tion A are tracing the same curve ABC, then a certain mass M acted on by 
forces F, F’, F”, . . . , with initial velocity V colinear with velocities 

, ,, 
at the initial position A will trace the same curve 

Av%CyOii ",fie'fEks F, F’, F”, . . . . are independent of time and the 
initial kinetic energy M V,* 

rr2 
of the mass M equals the sum mvo2 6 2 + m'u o + 

R’l’vo + , . ..) of the initial kinetic energies of the masses m, m', m”. 

A generalization of the above theorem is as follows: 

Theorem. let each of the masses ml, m2, . . . . m,, acted on by forces 
F,(i 1, 2, . . . . n), which depend only on the position, trace a curve AB, 
and let vi0 be the velocity of the mass mi at the initial point A. Then 

1) A certain mass M, acted on by the force 

F =a,F, +...+a,F, 

(where ai is a constant), having velocity V, with the same direction as 
vi0 at the point A, will trace the same curve AB, or part of it, if, and 

only if 
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itWo = ulmlv102 + . . - + a,m,v,,2>0 (l*l) 

2) Conversely, if curve A B traced by mass M with velocity V acted on 

by the force 

F = a,F, + . . . + anFn 

then along curve A B 

MV2 = almlv12 + - . . + a,m,v,” (l-2) 

In this way forces F, and the corresponding motions could be regarded 

as base forces and base motions by analogy with vector spaces. ‘lhe 

original Bonnet theorem is a special case of this generalization, and is 

obtained by putting ai = + 1. 

The equations of motion are linear with respect to masses and forces; 

therefore, the proof of the first part of the generalized theorem is 

almost identical with the proof of Bonnet. 

Let us call the motion caused by one of the forces F1, F2, . . . , F,,, 
acting alone, a partial motion, and the motion caused by force F, the 

resultant motion. 

If in the resultant motion mass M does not trace curve A B, then we 

shall apply a force N, normal to the curve, such that the action of F + N 
will cause M to trace curve A B . Then 

MdV/dt = a,F, + . . . + anFn + N (1.3) 

where V is the velocity vector of mass M at any point C on the curve AB. 
Multiplying scalarly equation (1.3) by the vector of elementary displace- 
ment along the curve, dg, we obtain 

d&W = 2 (a,F, ad, + . . . + a,F,.d,) (1.4) 

If in the partial motion vi is the velocity of the mass mi(i = 1, 

. ..) n) at a point C, then similarly to (1.4) for the same displacement 

dS we have 

dmivi2 = 2Fi *d, (i=l,...,n) (1.5) 

‘lhe intervals, corresponding to the fixed displacement ds, are diffe- 

rent in the partial and resultant motions because of the different velo- 

cities II. and V. lhe positiondependent forces Fi, however, are the same 

in (1.4)aand (l.S), and the corresponding scalar products (1.4) and (1.5) 

are equal at the same point C. 
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and right-hand members, 

in (1.4), we obtain 

dMV2 
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(1.5) by Oi’ adding together left-hand members 

and substituting the resulting right-hand member 

= a,d (mlv12) + 

Integrating the above equation, by 

the expression for M V2 on curve A B 

. . . + a,d (m,~,,~) 

virtue of condition (1.1) we obtain 

MV2 = almIq2 + . . . + a,m,vn2 (1.6) 

valid at any point of curve A B , and positive on curve AB at least in 

the neighborhood of point A (by virtue of the inequality in (1.1)). 

We will now prove that along curve A B , force N E 0. In the plane s, 

normal to the curve, for each partial motion we have 

nrivi2 
-n = (Fi)n ( =l,...,n) 

P 
(1.7) 

where n is the unit vector of the principal normal, p is the radius of 

curvature, and the subscript n indicates projection in the n-plane. Pro- 

jecting (1.3) on n-plane, we obtain 

7 n = [ai (F&t + . . . + a, (Fn)xl + K (1.8) 

Again utilizing the fact that in the partial and resultant motions we 

have the same force Fi, we will substitute (1.7) in (1.8), obtaining N=O 

by virtue of (1.6); point C is arbitrary, hence N must identically equal 

zero, which was to be proved. 

We will now prove the second part of the theorem. Projecting the equa- 

tions of partial and resultant motions on the n-plane, we obtain (1.7) 

and (l.g), by virtue also of the conditions of the second part of the 

theorem N z 0. Chce more using the equality of Fi in (1.7) and (l.g), and 

substituting from (1.7) Fi multiplied by cz into (l.g), and then multi- 

plying (1.8) by (pn), we obtain an expression which proves the second 
part of the theorem. 

‘Ihe first part of the theorem does not tell whether the resultant 

motion along curve AB originating at A is possible when condition (1.1) 

is not satisfied. The second part of the theorem answers in the negative, 

for if such a motion were possible then condition (1.1) would be satisfied 
at every point of the curve. 

The time independence of the forces F;, assumed by Bonnet is in- 
sufficient for the proof of the Ronnet and of the generalized theorem; 

it is necessary for forces Fi to be dependent on the position C only. 
Indeed, if the forces Fi depend on some parameters which at C are 



1028 V.B. Egorov 

different for partial and resultant motions, for example velocity, then 
the theorem cannot be proved. GI the other hand, forces Fi need not be 
purely positiondependent. For example, forces depending only on the tra- 
jectory curvature or on the direction of the velocity are in general not 
positiondependent, but are so when the trajectory is fixed. Moreover, 
forces Fi could be given only along curve A B but unspecified elsewhere. 

If the forces depend not only on the position C, but also on the mass, 
that is if F. = k .(m)f .(C), then the generalized theorem remains valid if 
in the parts’(l) kd (h) of the theorem the mass mi is replaced by 
miki(M)/ki(mi). Masses completely cancel out in conditions (1.11 and (1.2) 
when m1 = m2 = . . . m,. Ihis occurs when the forces are mass-forces. 

‘lhe generalized theorem can also be proved for a constrained motion of 
a particle, when curve AB lies on a smooth surface. Indeed, the reaction 
forces N, and Ni, in the partial and the resultant motions are respect- 
ively normal to the v,,-plane, which is tangent to the surface and to tra- 
jectory A B . ‘Ihe force N which constrains the particle to trace curve A B 
may lie in the sO-plane. Now, instead of (1.31 we have 

MdV/dt = alF, + . . . + anFn + N + No (1.9) 

‘lhe relations (1.4) and (1.6) obviously remain valid, and (1.7) will 
change into 

mivia 
- n = (FiL + Nia 

P 
(1.10) 

Projecting (1.9) on the n-plane, normal to the curve, we obtain 

M ~n==al(F,),+...+a,(F$.+N+N, (1.11) 

Substituting in (1.11) the expressions for (F, I,, from (1.101, we have 

II ML’2 
--- 3 almlvla + . . . + wwn2) n = N + No - (UP,, + . . . + a,,N,,,,) 

P 1 
or, by virtue of (1.6) 

0 = N + N, - (a,% + . . . + @no) 

If we choose N orthogonal to N, and Ni, then we have N = 0, N, = 
aiNiO + . . . + anNnO ; that is, we have not only proved the first part of 
the generalized theorem for a constrained motion, but have also obtained 
a simple expression for the normal reaction in the resultant motion in 
terms of normal reactions of the partial motions. 

‘lhe proof of the second part of the theorem follows, if instead of 
equations ( 1.7) and (1.8) we use equations (1.10) and (1.11). 
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Note: It can easily be shown that the generalized theorem can be form- 
ulated and proved In the following symmetric form: 

Let (n - 1) particles among a set of n particles trace the same curve 
AB or part of it, starting from point A with initial codirectional velo- 
cities vi0 and under the action of the positiondependent forces Piti= 1, 
. . . . n) respectively. Then 

(1) The remaining mass vi will trace the same curve, or part of it, 
if there exist real numbers oi(i = 1, . .., n) such that 

alFi + . ..+a,,F,,=O, almlv~Oa + . . . + anm,vMa = 0 (1.12) 

and the value of mLvC2 derived from (1.2) satisfies vkwk2 > 0. 

(2) If curve AB is traced by the remaining mass nk under the condition 

alFl+ . . . +a,F,=O 

where ai are real numbers, then at any point of the curve 

almpla + . . . + a,m,vna = 0 (i.13) 

2. Example of an application of the generalized theorem. 
Suppose we wish to know whether or not a motion of a mass M on a curve 
A B under the action of the sum of the given forces al, . . . . an is 

possible. 

If for every force ai we can find a mass mi and a constan!: oi such 

that mi would trace curve A B under action of force Fi = ai/ai, then the 

generalized theorem fully answers the question, for the motion of the 

mass mi under the action of force Fi can be regarded as partial motion, 

and the motion of mass M under the action of the equivalent force 

alFl -I- . . . +anFn=al+ . . . +a n 

as the resultant motion. It appears that a force required for the partial 

motion can differ from a given force by a scalar factor. By introducing 

forces Fi differing from given forces ipi, we can analyse motions to which 
the original Bonnet theorem is not applicable. We will illustrate this by 

an example. 

In the problem of motion of a particle gravitationally attracted by 

two fixed masses a and /3, Lagrange [ 1 1 - using the elliptic coordinates 

s=r+q and U= F-Q, 

where r and q are distances of the particle from a and 

reduced the problem to quadratures. He showed that the 
tions of the problem are 

@ respectively - 

particular solu- 
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s = so and u=uO 

where s,, and uO are multiple roots of the polynomials 

S = S(s) and II = c&l), 

which are under the radical sign in the denominators of the integrals. 

lhe solution s = so is an ellipse with a and /3 as the foci, and the solu- 

tion u = u,, is one branch of a hyperbola with the same foci. Moreover, 

Lagrange states (E 2 1 , p. 1291: “In this way, the particular solutions 

discussed above give ellipses or hyperbolas traced around the force centers 

a/r2 and P/q’, taken as the foci. Since the polynomials S and U contain 

three arbitrary constants A, B and C depending on the initial direction 

and initial velocity of the particle, it is clear that we can always 

choose these parameters in such a way that the particle will trace the 

prescribed ellipse or hyperbola with a and /3 as foci.n Using the general- 

ized theorem, we will prove that the above statement, valid for an 

ellipse with the foci a and @ is not valid for any hyperbola with the 

foci a f /3, and we will show all those branches of hyperbola given by the 

solution u = uO, which can be traced about the foci a # f?. 

Legendre ([ 8 1 , p. 4261 also proved, independently of Lagrange, that 

an arbitrary ellipse with foci a and /3 is a solution of the problem. 

In paper [ 1 1 already mentioned, Bonnet claimed (before formulating 

his theorem) that the above statements by Lagrange and Legendre follow 

from his theorem. Bonnet’s claim must be corrected, because Lagrange’s 

statement with respect to the hyperbolic solution u = uO does not follow 

directly from Bonnet’s theorem. Indeed, a fixed branch of hyperbola with 

foci a and /3 does not satisfy the conditions of BOnnet’s theorem; as its 

concavity is turned towards one of the attracting centers, it cannot be 

traced under the action of the second attractive center alone. 

This was noticed in 1866 by Sylvester 14 I who mentioned that Bonnet’s 

theorem could be made applicable to hyperbolas by the introduction of 

negative kinetic energies and imaginary motions. 

However, the generalization of Sonnet’s theorem proved in Section 1 

can be applied to hyperbolas without the use of imaginaries. By the intro- 

duction of repulsive forces for the partial motion, the problem of exist- 

ence regions and other properties of purely hyperbolic motion can be 

fully solved by this generalization. Since the centers are always in the 

plane of the hyperbola, it is sufficient to resolve this question in one 

plane only. 

Using polar coordinates r, 8, we will consider the motion of a particle 

under the action of a central repulsive force, inversely proportional to 

the square of the distance. The integrals of kinetic energy and area are 
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respectively 

VB --‘+” 
2 (P < 01, 

which are similar to the corresponding integrals in the case of an 

attracting mass p > 0, the difference being the sign preceding /L. 

From these two integrals it is easy to derive the solution 

r (8) = p 
1 +eccmO 

which is similar to that in the case of an attracting mass p > 0, where 

p has the same sign as p. 

Since p < 0, the positive values of r, corresponding to real tra- 

j ectories, exist only when e > 0, which means that we can have only hyper- 

bolic motion (when e < 1, by virtue of p < 0 we have r < 0). Besides, the 

repulsing center is not the nearer focus but the distant one with respect 

to the branch traced. This proves quite convenient for the solution of the 

problem by the generalized theorem. 

With the proper choice of units of mass and time, we can have the dis- 

tance between the centers equal unity, the attraction constant equal 

unity, and u + p = 1, i.e. a = 1 - p. Let /3 < a, that is @ < 0.5 (In Fig. 
1, p = 0.1). 

Since a branch of the hyperbola with the focus /3 can be traced not 

only under the action of one attractive force F .p, I?\ = /3/r&, attract- 

ing toward the focus 8, but also under the actron o one repulsive force 

Fc, I F’ I = dra2, repulsing from the focus a, and since the resultant 

force F in our problem of two attracting centers is 

F = F, + (- 1) F, 

the first two motions can be regarded as partial motions, and the motion 

caused by the force F as a resultant motion. We will assume that the 

masses m =m = M, and the acting forces are mass forces. We can now 

apply thh genzralized theorem and determine where along the hyperbola the 

kinetic energy for the resultant motion is positive, that is, determine 
where the motion along a corresponding hyperbola is possible. 

Applying the area and the kinetic energy integrals of 
motions at the point C, which is the intersection of the 

the line a/3, and also at a point at infinity, we obtain 

the partial 

given branch and 

vpc* P _ vi-s -----* 2 ‘PC 2 

uac _&+A+$, 

rpcvOc = dv,, 

racvoc = dv,, 
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where d is the distance frcaa the asynqtote to the focus, and us and VP 

are the corresponding velocities. 

Introducing the angle y between au asymptote and the line a /3, we have 

‘DC = $ (1 - cos r), role =G(i+cosr), d=fsinr (2.1) 

Eliminating vee and v through area integrals, and taking into 

account (2.1) and then a$ying (1.2) for the resultant motion, we obtain 

‘pm’ B v ’ am 
-==v 

f---B Vce’ 2p-i 

2 -=coByt 2 -= cosy 2 (2.2) 

Since B < l/2 when y < v/2, it follows for the velocity at infinity 

l/2 v-2 < 0, 

which wrees with the second part of the theorem that the motion from 

infinity is inpossible. 

Men y > n/2, we have fran (2.2) that 

v-2 > 0; 

hence for a # /3 the motion from infinity is possible, but only on a 

branch about the larger mass, In the latter case, when the branch 

approaches the line ra = ‘6, that is when y + a/2, the quantity V, 

approaches infinity. After finding kinetic energies for partial motions 

we construct the function 

T = -; [upa + (- i)u,s] = ; + y + ‘5 (2.3) 

‘lhe function T is obviously symsetric with respect to the point C and 

has a maximm at C. Using (2.1)) we find the dependence of VE on the 
orientation of a hyperbola: 

T, _ ‘;’ _28 ti + coo;; --a(;- coB v)’ 
(2.4) 

For y < s/2 

rhen p > i (’ - cos Y)’ 
2 i+cdy 

Ihe above condition for /3 is satisfied for all y < y’(/3), where the 

expression y*(p) is obtained fran the condition Tc = 0. 
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Fig. 1. Fig. 2. 

lhe graph of y* versus p is shown in Fig. 2, where y* is on the 

abscissas. It is seen that y* grows monotonically, approaching infinity 
asymptotically at the points fl= 0 and /3 = 1. On the branch where y < y* 

near the point C, there exists a region where T > 0. 

l-a = a cos 7, re = bcoq, a= a+Gi 
a-p ’ 

b = “.‘J;T (2.5) 

lhis region must be bounded by the locus of points Y = 0. Substituting 

T=Oandr,= COS y + F 
P 

in (2.3), which is obviously valid for the 

branch of hyperbola corresponding to the angle y , we obtain 

solving the above quadratic equation, we find F 
B 

and ra = COS )’ + F 
8: 

rp = a*~/u--PI 
1-22p cos 7, ra = ~--PfJW-PJcos7 

l-23 

If we reject the minus sign, which gives FP < 0 when @ < l/2 and 

y < s/2, and replace 1- B by Q, then the above formulas reduce to the 
formulas (2.5). 

In (2.5), neglecting cos y and converting to Cartesian coordinates, we 

find that tk curve defined by the parametric equations (2.5) is a circle 

of radius JQ3 /(a - /3), in which the distance between the center and 

the point 6 coincides with the line a Sand equals @/(a - ~3). 

Motions along the hyperbolic arcs are possible only inside this circle. 

A body starting with zero velocity from the point A on the circum- 
ference will perform oscillatory motion on the hyperbolic arc ABC about 

its vertex C (Fig. 1). 



1034 V.B. Bgorov 

lhe amplitude becomes maximum at y = 0, decreasing and approaching 

zero as y + y*. We will prove that the zero amplitude corresponds to the 

libration point L, that is, to the point where the attracting masses a 

and /3 balance each other (Fig. 11. 

Ihus the libration point is found from the conditions: 

- 
qi+cI=1. 

a P 
-q== or rp= I/ B 

a P r(l a. 

The above condition restates the characteristic property of the circle 

(2.5); hence, when ra + P 

a 

= 1, the circle passes through the libration 

point. It can easily be s own that inside the circle the attraction of 

mass p is stronger than the attraction of mass a. 

‘l’hus, a motion along hyperbolic arcs between the libration point and 

the line ra = rfl, that is, along the arcs where y*(p) < y < n/2, would 

require negative kinetic energy and is therefore impossible. Motions 

along other hyperbolic arcs with foci a and fi are possible everywhere in 

the half-plane r 
Is 

> rat whereas in the half-plane r 
P 

< ra they are 

possible only inside the circle (2.5). This result conflicts with 
Lagrange’s statement on the possibility of motion along any branch of a 

hyperbola. 

There is only one special case, p = a = l/2, when motions are possible 

on any branch of a hyperbola with foci a and 6. In this special case the 

velocity at infinity V = 0. when /3 approaches a, the circle (2.5) 

approaches the line r p= ra, the region T > 0 becomes unbounded, and all 

zero-velocity points, except the libration point, recede to infinity. On 

account of the symnetry of the force field, the oscillatory motions along 

the line ra = r 
B 

can have arbitrary amplitudes, and velocities at infinity 

may assm any numerical value. 

Remarks. 1. In this second paper ([ 1 I, p. 233) Bonnet gave a new 

proof of his theorem (formulated less generally than in 1 above) in 

which he again neglected its application to the hyperbolic solutions and 

also failed to notice that the theorem could be considerably generalized 

and made much more exact. 

Witteker. who presented Bonnet’s theorem in his book [ 5 1 , also over- 

looked the possibility of greater generalization and exactness. He form- 

ulated Bonnet’s theorem (Section 51) through purely positiondependent 

force fields, thus avoiding the inaccuracy contained in the original 

Bonnet formulation. 

Nevertheless. in discussing the problem of two fixed centers in 

Section 53, Witteker applies Bonnet’s theorem to confocal ellipses and 
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hyperbolas, obviously not realizing that the theorem does not apply to 

hyperbolas. 

Badallan [ 8.7 1, one of the later authors Interested in the problem 

of two fixed attracting centers. makes the same mistake in applying 

Bonnet’s theorem. 

2. Badalian classifies all possible kinds of motion in the problem of 

two fixed centers, showing in particular two classes of motion along 

hyperbolas (for h > 0 and h < 0, where h Is the constant kinetic energy), 

but he does not derive regions where motions of a given class can exist. 

The possibility of oscillatory motions along hyperbolas is not a new 

discovery; it was noticed by Legendre ([ 8 1, p. 511), who briefly mentions 

that a condition for an oscillatory motion is that the velocity should 

depend on the position on the line a. Legendre made no detailed study of 

this dependence, did not derive the regions of existence, and failed to 

notice that a motion satisfying his condition is not necessarily oscilla- 

tory, but may also be a non-oscillatory motion along a hyperbola to in- 

finity. 

The two kinds of hyperbolic motions were first pointed out by Charlier 

19 I. who classified all possible motions and showed the relation between 

the initial energies and the position. Charlier too does not analyse this 

relation, only mentioning that oscillatory motions along hyperbolas occur 

when h < 0, receding to infinity when h > 0. 

3. Among the many papers on the problem of two fixed centers, there is 

only one study in which the derivation of existence regions for hyperbolic 

motion with foci a and fi is attempted, namely that by Tallkvist 13 I, who 

discusses the problem of two centers for more than 500 pages, Using co- 

ordinates x and p deduced from the expressions ra = x + p, rB= X - p, 

when po > 0. for the oscillatory motion along a hyperbola Tallkvist ob- 

tains the relation between the initial energy h < 0 and the position in 

the form 

where 2~ is the distance between the particles m1 = a and a2 = p. Tallkvist 

makes the correct conclusion that such motions are possible only when 

(2.8) 

and labels the case Vkb. It is, of course, clear that under the conditions 

(2.8) a hyperbola must pass between L and p (Fig. l), which was to be 
expected. 



1036 Y.B. BgO’OU 

But ror the case labelled Vgu, that is, for hyperbolic motions with 
h > 0, ~9 < 0, Tsllkvist obtains the erroneous (in sign) formula again 
leading to the condition (2.6). which is wrong for h > 0, ~9 < 0 (when 
PO < 0, then the left-hand member of (2.6) cannot be less than the right- 

hand member). 
dX a 

( > 
&,a-c’ 

x0=+ p,e { Oo.LY - @I “‘I@ 1 
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